原创:岐山凤鸣(熊楚原),转载请注明本站域名
阶段性进行一些总结,这是总结的第二部分,包括一个不一样的局部特征聚合方法,即NetVLAD。
觉得不错不妨star/follow一下我的Github
NetVLAD
NetVLAD是论文[1]提出的一个特征聚合的方法。
在传统的网络里面,例如VGG啊,最后一层卷积层输出的特征都是类似于Batchsize x 3 x 3 x 512的这种东西,然后会经过FC聚合,或者进行一个Global Average Pooling(NIN里的做法),或者怎么样,变成一个向量型的特征,然后进行Softmax or 其他的Loss。
这种方法说简单点也就是输入一个图片或者什么的结构性数据,然后经过特征提取得到一个长度固定的向量,之后可以用度量的方法去进行后续的操作,比如分类啊,检索啊,相似度对比等等。
那么NetVLAD考虑的主要是最后一层卷积层输出的特征这里,我们不想直接进行欠采样或者全局映射得到特征,对于最后一层输出的W x H x D,设计一个新的池化,去聚合一个“局部特征“,这即是NetVLAD的作用。
NetVLAD的一个输入是一个W x H x D的图像特征,例如VGG-Net最后的3 x 3 x 512这样的矩阵,在网络中还需加一个维度为Batchsize。
NetVLAD还需要另输入一个标量K即表示VLAD的聚类中心数量,它主要是来构成一个矩阵C,是通过原数据算出来的每一个$W \times H$特征的聚类中心,C的shape即$C: K \times D$,然后根据三个输入,VLAD是计算下式的V:
\[V(j, k) = \sum_{i=1}^{N}{a_k(x_i)(x_i(j) - c_k(j))}\]其中j表示维度,从1到D,可以看到V的j是和输入与c对应的,对每个类别k,都对所有的x进行了计算,如果$x_i$属于当前类别k,$a_k=1$,否则$a_k=0$,计算每一个x和它聚类中心的残差,然后把残差加起来,即是每个类别k的结果,最后分别L2正则后拉成一个长向量后再做L2正则,正则非常的重要,因为这样才能统一所有聚类算出来的值,而残差和的目的主要是消减不同聚类上的分布不均,两者共同作用才能得到最后正常的输出。
输入与输出如下图所示:
中间得到的K个D维向量即是对D个x都进行了与聚类中心计算残差和的过程,最终把K个D维向量合起来后进行即得到最终输出的$K \times D$长度的一维向量。
而VLAD本身是不可微的,因为上面的a要么是0要么是1,表示要么当前描述x是当前聚类,要么不是,是个离散的,NetVLAD为了能够在深度卷积网络里使用反向传播进行训练,对a进行了修正。
那么问题就是如何重构一个a,使其能够评估当前的这个x和各个聚类的关联程度?用softmax来得到:
\[a_k = \frac{e^{W_k^T x_i + b_k}}{e^{W_{k'}^T x_i + b_{k'}}}\]将这个把上面的a替换后,即是NetVLAD的公式,可以进行反向传播更新参数。
所以一共有三个可训练参数,上式a中的$W: K \times D$,上式a中的$b: K \times 1$,聚类中心$c: K \times D$,而原始VLAD只有一个参数c。
最终池化得到的输出是一个恒定的K x D的一维向量(经过了L2正则),如果带Batchsize,输出即为Batchsize x (K x D)的二维矩阵。
应用
NetVLAD作为池化层嵌入CNN网络即如下图所示,
原论文中采用将传统图像检索方法VLAD进行改进后应用在CNN的池化部分作为一种另类的局部特征池化,在场景检索上取得了很好的效果。
后续相继又提出了ActionVLAD、ghostVLAD等改进。
在19年ICASSP即语音信号处理顶级会议上,牛津大学VGG引入NetVLAD和ghostVLAD来进行声纹提取和训练,取得了当前说话人识别的最好成绩。这部分之后再说。
Reference
[1]Arandjelovic R , Gronat P , Torii A , et al. [IEEE 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - Las Vegas, NV, USA (2016.6.27-2016.6.30)] 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - NetVLAD: CNN Architecture for Weakly Supervised Place Recognition[C]// 2016:5297-5307.